Modeling Molecular Kinetics with tICA and the Kernel Trick
نویسندگان
چکیده
منابع مشابه
Modeling Molecular Kinetics with tICA and the Kernel Trick
The allure of a molecular dynamics simulation is that, given a sufficiently accurate force field, it can provide an atomic-level view of many interesting phenomena in biology. However, the result of a simulation is a large, high-dimensional time series that is difficult to interpret. Recent work has introduced the time-structure based Independent Components Analysis (tICA) method for analyzing ...
متن کاملLandmark Kernel tICA for Conformational Dynamics
Molecular dynamics simulations of biomolecules produce a very high dimensional time-series dataset. Performing analysis necessarily involves projection onto a lower dimensional space. A priori selection of projection coordinates requires (perhaps unavailable) prior information or intuition about the system. At best, such a projection can only confirm the intuition. At worst, a poor projection c...
متن کاملThe Kernel Trick for Distances
A method is described which, like the kernel trick in support vector machines (SVMs), lets us generalize distance-based algorithms to operate in feature spaces, usually nonlinearly related to the input space. This is done by identifying a class of kernels which can be represented as norm-based distances in Hilbert spaces. It turns out that common kernel algorithms, such as SVMs and kernel PCA, ...
متن کاملKernel Reparametrization Trick
While deep neural networks have achieved state-of-the-art performance on many tasks across varied domains, they still remain black boxes whose inner workings are hard to interpret and understand. In this paper, we develop a novel method for efficiently capturing the behaviour of deep neural networks using kernels. In particular, we construct a hierarchy of increasingly complex kernels that enco...
متن کاملLearning with Algebraic Invariances, and the Invariant Kernel Trick
When solving data analysis problems it is important to integrate prior knowledge and/or structural invariances. This paper contributes by a novel framework for incorporating algebraic invariance structure into kernels. In particular, we show that algebraic properties such as sign symmetries in data, phase independence, scaling etc. can be included easily by essentially performing the kernel tri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Chemical Theory and Computation
سال: 2015
ISSN: 1549-9618,1549-9626
DOI: 10.1021/ct5007357